skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ebert, Yael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study demonstrates the feasibility of speleothem magnetism as a paleo-hydrology proxy in speleothems growing in semi-arid conditions. Soil-derived magnetic particles in speleothems retain valuable information on the physicochemical conditions of the overlying soil, and changes in bedrock hydrology. Yet, the link between magnetic and isotopic proxies of speleothems has been only partly established. We reveal strong coupling between the inflow of magnetic particles (quantified using the magnetic flux index, IRMflux) and δ13C in two Holocene speleothems from Soreq Cave (Israel). The stalagmite record spans from ca. 9.7 to ca. 5.4 ka, capturing the warm-humid conditions associated with the early Holocene and the transition to mid-Holocene wet-dry cycles. Extremely low IRMflux during the early Holocene, indicating minimal contribution from the overlying soil, is accompanied by anomalously high δ13C (approaching bedrock values) hypothesized to be caused by high rainfall and soil erosion. By contrast, IRMflux during the mid-Holocene covaries with the saw-tooth cyclicity of δ13C and δ18O, interpreted as rapid fluctuations in rainfall amount. The peaks in IRMflux precede the negative (wet) δ13C peaks by ~60–120 yr. The apparent lag is explained as a rapid physical translocation of overlying soil particles via groundwater (high IRMflux) as a response to increasing rainfall, compared with slower soil organic matter turnover rates (10–102 yr). 
    more » « less
  2. Paleomagnetic, rock magnetic, or geomagnetic data found in the MagIC data repository from a paper titled: Large geomagnetic field anomalies revealed in Bronze to Iron Age archeomagnetic data from Tel Megiddo and Tel Hazor, Israel 
    more » « less